BBA 41065

ATP-DEPENDENT PHOSPHATE TRANSPORT IN SARCOPLASMIC RETICULUM AND RECONSTITUTED PROTEOLIPOSOMES

WILLIAM W. CARLEY and EFRAIM RACKER

Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853 (U.S.A.)

(Received November 26th, 1981)

Key words: Phosphate transport; Sarcoplasmic reticulum; Ca2+ uptake; Ca2+-ATPase; Proteoliposome

During uptake of Ca^{2+} by rabbit sarcoplasmic reticulum, about $1 \mu \text{mol}$ of $^{32}P_i$ was taken up per μmol $^{45}Ca^{2+}$ transported. The uptake of P_i was dependent on external Ca^{2+} , Mg^{2+} and ATP. Intravesicular Ca^{2+} did not substitute for external Ca^{2+} . In contrast to the accumulation of Ca^{2+} which was abolished by the ionophore A23187, the uptake of P_i continued to take place provided sufficient Ca^{2+} was present in the medium. Thus, a Ca^{2+} gradient did not seem to be required. Similar observations were made with proteoliposomes reconstituted with membrane preparations of sarcoplasmic reticulum and soybean phospholipids. However, when purified Ca^{2+} -ATPase was used for reconstitution, there was ATP-dependent Ca^{2+} uptake but no ATP-dependent P_i transport was observed. These data show that the mechanism of P_i transport cannot be a passive movement in response to a Ca^{2+} gradient but appears to be catalyzed by a specific protein, which is inactivated during purification of the Ca^{2+} -ATPase. A protein that catalyzes P_i transport in reconstituted vesicles has been solubilized by extraction of sarcoplasmic reticulum with sodium cholate.

Introduction

Ca²⁺ fluxes in sarcoplasmic reticulum participate in contraction and relaxation of skeletal muscle. The sarcoplasmic reticulum releases Ca²⁺ into the myoplasm in response to a neural signal, causing a cascade of events leading to contraction. Subsequently, relaxation is accomplished by the MgATP-dependent removal of Ca²⁺ back into the sarcoplasmic reticulum lumen by an ATPase residing in the reticular membrane.

The exact mechanisms for the storage and release of Ca^{2+} have remained elusive. Although there is now almost general agreement that calsequestrin and an acidic Ca^{2+} -binding protein appear to be localized in the lumen of sarcoplasmic reticulum, the total amount of Ca^{2+} taken up by isolated reticulum vesicles in the absence of either oxalate or P_i is small [1]. Liposomes reconstituted with purified Ca^{2+} -ATPase are impermeable to either oxalate or P_i. Ca²⁺ pumping does not take place unless a Ca²⁺-precipitating anion is incorporated into the vesicles during reconstitution [2].

P_i seems to be a likely candidate as the natural co-ion in the Ca²⁺-uptake process. Previous work by Hasselbach and Weber [1] has indicated that competition existsbetween P_i and oxalate for a common site of an anion channel and it was assumed that the transport of P_i and/or oxalate is a consequence of the ATP-energized accumulation of Ca²⁺. We report in this paper that P_i transport, like Ca²⁺ transport, is dependent upon ATP, but that a Ca²⁺ gradient is not required for this process. Preliminary data on the solubilization of the P_i transporter are also reported.

Materials and Methods

Bovine albumin stock solution, Tris, H^+ -Dowex 50W 50 × 8-100, sodium cholate and sucrose were

obtained from Sigma, St. Louis, MO. Cholic acid was recrystallized three times from 95% ethanol prior to use. Divalent cations (chloride form) were from Mallinckrodt Chemical Works, St. Louis, MO, and N-ethylmaleimide was from Schwarz/ Mann, Orangeburg, NJ. A23187 was a gift from D.R. Hosley of Eli Lilly and Co., Indianapolis, IN. ³²P; was obtained from ICN, Irvine, CA, and was hydrolyzed in 2 M HCl for 2 h at 95°C at 60-80 mCi/ml, H⁺-Dowex 50W 50 × 8-100 was neutralized (pH 6.5) with Tris-HCl for the Ca²⁺-transport assay. Anion exchange resin (AG1X8) from Biorad, Richmond, CA, was converted to the formate form for use in the Pi-transport assay (pH 6.0). Crude soybean phospholipids (asolectin) were obtained from Associated Concentrates, Woodside, NY. Liquiscint was from National Diagnostics, Sommerville, NJ. Protein was determined according to the method of Lowry et al. [3].

Preparation of sarcoplasmic reticulum. Sarcoplasmic reticulum was prepared from rabbit skeletal muscle as described by MacLennen [4] except that 0.5 mM phenylmethanesulfonyl fluoride was added to the initial homogenate. The final sarcoplasmic reticulum pellet was resuspended in 0.3 M sucrose, 10 mM Tris-HCl (pH 8.0).

Reconstitution of sarcoplasmic reticulum. Sarcoplasmic reticulum vesicles (100 μ g protein) were mixed with 2 mg asolectin and 50 mM Trismaleate, pH 7.5, 0.4 M potassium phosphate, pH 7.5, 2.5 mM dithiothreitol and brought to 100 μ l with glass-distilled water. Freeze-thaw/sonication [5] as modified [6] was used for reconstitution.

 P_i - and Ca^{2+} -transport assays. The ³²P_i uptake was assayed according to the method of Gasko et al. [7] and was initiated by the addition of 10 μ g protein to 250 μ l (35°C) containing 50 mM Trismaleate, pH 7.5, 0.2 mM $CaCl_2$, 10 mM ATP (sodium salt), pH 7.5, 10 mM $MgCl_2$, 50 mM potassium [³²P]phosphate, pH 7.5 (1100 cpm/nmol P_i), and 0.13 M sorbitol. After 1.5 min, 200 μ l were removed and passed through the anion-exchange resin column.

The 45 Ca²⁺-uptake assay was identical to that for P_i except 45 Ca (1788 cpm/nmol Ca²⁺) was used rather than $^{32}P_i$ and a cation-exchange column was used (Dowex-Tris).

Results

Uptake of P_i in sarcoplasmic reticulum vesicles

As can be seen in Table I, the uptake of ³²P_i into sarcoplasmic reticulum vesicles required the presence of Mg²⁺, Ca²⁺ and ATP. Deletion of any of these components eliminated the process, and addition of N-ethylmaleimide inhibited. The addition of 1% deoxycholate or Triton X-100 after the assay released all P_i.

Since these experimental conditions are identical to those required for the ATP-driven uptake of Ca²⁺, the question arises as to whether the two processes are interdependent. It is clear from reconstitution experiments with the Ca2+-ATPase [2] that cotransport of P_i is not required for Ca²⁺ uptake because Ca²⁺ transport occurs in vesicles that are incapable of P_i transport. However, the possibility that P; is transported as a co-ion with Ca2+ needed further examination. As shown in Table II, CoCl₂ or MnCl₂ effectively substituted for Mg²⁺ in both systems. Table III shows that Sr²⁺, which is known to be transported by sarcoplasmic reticulum vesicles [8], substituted for Ca²⁺ in the process of P_i transport. A parallel requirement for Ca²⁺ and P_i uptake was observed when the nucleotide specificity was explored (Table IV). ATP was the most effective trinucleotide supporting either Ca²⁺ or P_i transport. The re-

TABLE I
TRANSPORT IN SARCOPLASMIC RETICULUM
VESICLES

P_i uptake was measured as described in Materials and Methods with additions and deletions as shown. Each value is the average of duplicates. Sarcoplasmic reticulum was incubated with 5 mM N-ethylmaleimide for 5 min at 35°C prior to assay.

Conditions	³² P _i uptake (nmol/min per mg protein)	
Complete system	605	
$-Mg^{2+}$	41	
-ATP	38	
$-Mg^{2+}$, $-ATP$ $-Ca^{2+}$	41	
$-Ca^{2+}$	86	
+5 mM N-ethylmaleimide	58	
(zero time)	85	

TABLE II

 ${\rm Mg^{2+}}$ REPLACEMENT BY DIVALENT CATIONS IN THE ATP-DEPENDENT ${\rm P_{i^-}}$ AND ${\rm Ca^{2^+}}\text{-}{\rm UPTAKE}$ ASSAYS IN SARCOPLASMIC RETICULUM

The P_i- and Ca²⁺-transport assays were as described in Materials and Methods except that 10 mM MgCl₂ was replaced by 10 mM of the chloride salt of the indicated divalent cation. Each value represents averaged duplicates of P_i and Ca²⁺ transport after subtracting a value obtained with sarcoplasmic reticulum vesicles that were heated to 60°C for 5 min. These blank values were 10% or less of the experimental values in all cases except with Cd²⁺ and Cu²⁺, which gave rise to precipitation of P_i. Thus, the latter data are not as firm as the others because the blank values were similar to the experimental values.

Divalent cations (10 mM)	³² P _i uptake (nmol/min per mg protein)	⁴⁵ Ca uptake (nmol/min per mg protein)	
None	72	130	
Mg ²⁺ Ba ²⁺	780	1 155	
Ba ²⁺	33	65	
Cd ²⁺	0	70	
Cd ²⁺ Co ²⁺ Cu ²⁺	871	1050	
Cu ²⁺	0	31	
Mn ²⁺	618	630	
Sr ²⁺	14	6	

quirement for Ca^{2+} for P_i uptake and a titration of P_i concentrations are shown in Figs. 1 and 2. Under the given conditions, calcium phosphate precipitation did not occur until the Ca^{2+} concentration was above 400 μ M. The K_m value for ATP, as well as for Mg^{2+} , was about 2 mM, 50 μ M for Ca^{2+} and 15 mM for P_i . The pH optimum for P_i uptake was 7.0–8.0.

The first clue pointing to a difference between these two processes was observed when the effect of A23187 was examined. As can be seen from Table V (Expt. 1), this ionophore, which eliminates Ca²⁺ accumulation, was much less effective in suppressing P_i uptake, particularly when the Ca²⁺ concentration was raised to 1 mM.

Uptake of P_i in reconstituted vesicles

Reconstitution of P_i transport into phospholipid vesicles was achieved by freezethaw/sonication as described in Materials and Methods. It can be seen from Table VI that basically the same requirements for P_i were observed

TABLE III

EFFECT OF DIVALENT CATIONS IN REPLACING Ca²⁺ IN ATP-DEPENDENT UPTAKE OF P_i IN SARCOP-LASMIC RETICULUM VESICLES

The P_i-transport assay was performed as described in Materials and Methods except that 0.2 mM CaCl₂ was replaced by 0.2 mM of the chloride salt of the divalent cations indicated. All values represent the average of duplicates after subtracting a value obtained with sarcoplasmic reticulum heated to 60°C for 5 min, which was consistently less than 10% of the experimental value.

Divalent cations (0.2 mM)	P _i uptake (nmol/min per mg protein)		
Ca ²⁺ Ba ²⁺ Cd ²⁺ Co ²⁺ Cu ²⁺ Mn ²⁺	616		
Ba ²⁺	115		
Cd ²⁺	127		
Co ²⁺	131		
Cu ²⁺	91		
Mn ²⁺	123		
Sr ²⁺	497		

in the reconstituted vesicles as in the intact sarcoplasmic reticulum vesicles. As shown in Table V (Expt. 2), there was little effect by A23187 on P_i accumulation, while Ca²⁺ accumulation measured under identical conditions was greatly suppressed. Thus, much more P_i was retained than

TABLE IV

ATP-DEPENDENT P_i AND Ca^{2+} TRANSPORT IN SARCOPLASMIC RETICULUM: ENERGY SOURCE DEPENDENCE

The P_i- and Ca²⁺-transport assays were as described in Materials and Methods except ATP was replaced by the indicated compound. Each value is the average of duplicates.

Energy source	P _i uptake (nmol/min per mg protein)	Ca ²⁺ uptake (nmol/min per mg protein)	
-ATP	33	6	
ATP	527	505	
UTP	129	135	
GTP	121	119	
ITP	133	121	
CTP	126	59	
Phosphoenol-			
pyruvate	16	3	
Acetyl phosphate	48	50	

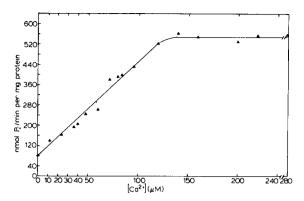


Fig. 1. The effect of Ca^{2+} on ATP-dependent P_i uptake in sarcoplasmic reticulum. The P_i -transport assay was as described in Materials and Methods except increasing amounts of Ca^{2+} were added to the assay as indicated. Each value is the average of duplicates.

Ca²⁺ (615 as compared to 95 nmol/min per mg protein, respectively) under identical conditions. To ensure that these results were not an artifact of the A23187 and the ion-exchange column removing Ca²⁺ from inside the vesicles after the assay, we carried out similar experiments using the Sephadex column assay [9]. As in the ion-exchange assay much more ³²P_i (560 nmol P_i/min per mg protein) was retained than ⁴⁵Ca²⁺ (23 nmol Ca²⁺/min per mg protein) in the presence of A23187 in the Sephadex assay, indicating no dif-

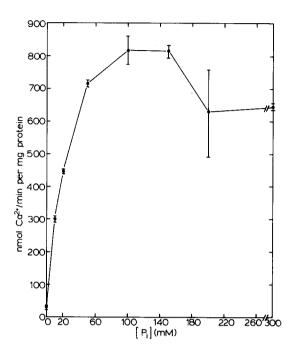


Fig. 2. The effect of phosphate on ATP-dependent Ca^{2+} uptake in sarcoplasmic reticulum. The Ca^{2+} -transport assay was as described in Materials and Methods except increasing amounts of P_i were added to the assay as indicated. Each value is the average of duplicates.

TABLE V EFFECT OF A23187 ON P_i AND Ca^{2+} TRANSPORT IN SARCOPLASMIC RETICULUM VESICLES

 Ca^{2+} - and P_i -transport assays were as described in Materials and Methods. A 0.25 μl aliquot of A23187 (5 mg/ml Me₂SO) was added to the assay where indicated. An equal amount of Me₂SO had no effect in the assay. The reconstitution was as described in Materials and Methods. Each value is the average of duplicates with the ATP value minus the value without ATP.

Assay conditions	P _i uptake (nmol/min per mg protein)	Ca ²⁺ uptake (nmol/min per mg protein)	
Expt. 1			
Sarcoplasmic reticulum	702	825	
Sarcoplasmic reticulum + A23187 (5 µg/ml)	133	2	
Sarcoplasmic reticulum+		_	
1 mM CaCl ₂ + A23187	480	6	
Expt. 2			
Reconstituted sarcoplasmic			
reticulum	695	520	
Reconstituted sarcoplasmic reticulum + A23187			
(5 μg/ml)	615	95	

TABLE VI

\mathbf{P}_{i} Transport in reconstituted sarcoplasmic reticulum

P_i transport was assayed as described in Materials and Methods with deletions as shown. Each value is the average of duplicates. N-Ethylmaleimide was incubated with the vesicles prior to assay. The sarcoplasmic reticulum vesicles were reconstituted as described in Materials and Methods.

Assay conditions	P _i uptake (nmol/min per mg protein)
Complete	702
$-Mg^{2+}$	345
-ATP	146
$-Mg^{2+}$, $-ATP$	131
$-Ca^{2+}$	257
Complete + 10 mM N-ethylmaleim	ide
(10 min, 35°C)	86
Complete (zero time)	98

ference between the assays and eliminating the possibility of an artifact caused by the column assay.

To explore the possibility that P_i transport is simply driven by the inside positive potential generated by the electrogenic ATP-dependent Ca²⁺ translocation [6], valinomycin (2 μg/ml) was added to the assay. No significant difference in P_i transport was seen. In the presence of ATP, 615 nmol P_i/min per mg protein, and in the absence of ATP 121 nmol P_i/min per mg protein were transported.

Effect of internal and external Ca²⁺ on transport

To examine more directly the effect of a Ca²⁺ gradient on P_i uptake, we passively loaded sarcoplasmic reticulum vesicles with various amounts of CaCl₂ and then assayed P_i uptake in the presence or absence of ATP. In these experiments the Ca²⁺-loaded vesicles were diluted in the assay, so that more Ca²⁺ was present inside the vesicles than outside. As shown in Table VII, even at 20 mM CaCl₂ inside the vesicles, P_i uptake still required 200 µM external Ca²⁺ as well as ATP for a maximal rate (see also Fig. 1). Moreover, ATP hydrolysis was necessary, since nonhydrolyzable adenylyl imidodiphosphate did not substitute for

TABLE VII

THE EFFECT OF PASSIVELY LOADING SARCO-PLASMIC RETICULUM VESICLES ON P, TRANSPORT

Sarcoplasmic reticulum vesicles (40 mg/ml of 0.3 M sucrose, 10 mM Hepes, pH 7.3) were loaded with CaCl₂ by incubation for 20 h at 0-4°C with the indicated amount of CaCl₂. Each value is the average of duplicates. The P_i transport was assayed in the presence (Expt. 1) and absence of ATP (Expt. 2) as described in Materials and Methods.

CaCl ₂ outside (µm)	CaCl ₂ inside (mm)	P _i transport (nmol/min per mg protein)
Expt. 1		
0	0	84 ± 14
0.6	0.5	90 ± 5
2.4	2	98 ± 1
12	10	218 ± 8
24	20	182 ± 31
100	0	388 ± 26
200	0	548 ± 19
Expt. 2		
1.2	1.0	14
12	10	19

ATP in either CaCl₂-loaded or unloaded sarcoplasmic reticulum vesicles.

Similar experiments were performed with reconstituted vesicles prepared in the presence or absence of Ca²⁺ or P_i. It can be seen from Table

TABLE VIII

EFFECT OF Ca^{2+} AND P_i LOADING OF RECONSTITUTED SARCOPLASMIC RETICULUM ON Ca^{2+} AND P_i UPTAKE

Sarcoplasmic reticulum was reconstituted as described in Materials and Methods with either 10 mM CaCl₂ or 0.4 M potassium phosphate, pH 7.5, present. P_i- and Ca²⁺-transport assays were as described in Materials and Methods. Each value represents an averaged duplicate.

	Ca ²⁺ uptake (nmol/min per mg protein)	P _i uptake (nmol/min per mg protein)
(A) Ca ²⁺ load	ling (10 mM CaCl ₂)	
-ATP	40	32
+ATP	442	490
(B) P _i loading	(0.4 M potassium phosph	ate, pH 7.5)
-ATP	31	60
+ATP	532	551

TABLE IX SOLUBILIZATION OF ATP-DEPENDENT P_i AND Ca^{2+} TRANSPORT FROM SARCOPLASMIC RETICULUM

Sarcoplasmic reticulum (8 mg/ml) was solubilized with the indicated amounts of sodium cholate in the presence of 0.1 M sucrose, 50 mM Tris-maleate, pH 7.5, and 1 M KCl for 10 min at 4°C. The suspension was centrifuged at $200000 \times g$ for 20 min. The supernatant was diluted 20-fold with 0.1 M sucrose, 0.05 M KCl and 10 mM Tris-maleate, pH 7.5, and centrifuged at $200000 \times g$ for 1 h. The pellet was suspended in 100 μ l of the dilution buffer and 100 μ g of protein were reconstituted with soybean phospholipids as described in Materials and Methods. The P_i and Ca^{2+} assays were as described in Materials and Methods. Each value represents averaged duplicates less the rate of uptake without Mg^{2+} and ATP (which was less than 10% of the active transport). Total units = specific activity (nmol/min per mg protein)×mg protein recovered from the supernatant.

Fraction reconstituted	P _i uptake (nmol/min per mg protein)	Total units	Ca ²⁺ uptake (nmol/min per mg protein)	Total units
Sarcoplasmic reticulum	544	2 176	860	3 4 4 0
0.2% cholate extract	255	284	281	284
0.4% cholate extract	285	662	715	1 645
0.6% cholate extract	236	684	684	1984
0.8% cholate extract	354	1239	406	1421

VIII that neither P_i nor Ca²⁺ uptake was significantly influenced by these intravesicular ions. ATP was still required and a Ca²⁺ gradient was not. It should be emphasized that in these experiments, sarcoplasmic reticulum membranes were incorporated into liposomes without solubilization and fractionation. In these vesicles external P_i was capable of driving Ca²⁺ transport as in sarcoplasmic reticulum vesicles. On the other hand, incorporation of solubilized and purified preparations of the Ca²⁺-ATPase [2] gave vesicles that did not catalyze ATP-dependent P_i uptake yet catalyzed extensive Ca²⁺ transport provided P_i or oxalate was inside.

Solubilization of P_i transporter

Experiments on the solubilization of the P_i transporter with various concentrations of sodium cholate are shown in Table IX. Over 50% of the total P_i -transport activity was solubilized with 0.8% cholate. Extraction with 1% cholate or fractionation of the extract obtained with 0.8% cholate by salting out with ammonium sulfate inactivated the transporter. Attempts to solubilize the P_i transporter with deoxycholate also led to inactivation, explaining the previous observation [2] that there is no P_i transport in the Ca^{2+} pump reconstituted with an ATPase extracted with this detergent.

Discussion

There are two lines of evidence for the existence of a distinct P_i transporter in sarcoplasmic reticulum vesicles. The first is based on kinetic studies on the effect of P_i concentrations and competition with oxalate as previously described [1]. The second is based on reconstitution experiments. Purified ATPase preparations incorporated into liposomes do not catalyze Ca²⁺ uptake in the presence of external P; but do respond to internal P; [2]. The rate of P_i transport in sarcoplasmic reticulum vesicles is very high (over 500 nmol/min per mg protein) compared to P_i transport in sarcolemma membrane vesicles and mitochondria which were 5 and 2 nmol P_i/min per mg protein, respectively. It is obvious, therefore, that these membranes cannot contribute significantly as contaminants to the P. transport measured in sarcoplasmic reticulum preparations.

The question of the mode of action of the P_i transporter of sarcoplasmic reticulum vesicles and the role of ATP needs to be elucidated. Attempts to detect any P_i -stimulated ATPase activity have failed thus far. Similarly, no evidence for the formation of a modified transporter by ATP and a protein kinase could be established. The fact that the ATP-driven P_i uptake took place in the pres-

ence of A23187 under conditions that suppressed net Ca²⁺ uptake indicates that the ATP requirement is independent of the formation of a Ca²⁺ gradient. Ca²⁺-loading experiments support this conclusion. Moreover, a dependence on ATP was seen in reconstituted vesicles which contained a large reservoir of P_i to dilute and trap the isotopically labeled anion. Thus, ATP-independent P_i-P_i exchange contributes little to the uptake of ³²P_i and ATP-driven P_i transport occurs against a P_i gradient.

The most curious aspect of this P_i uptake is its physiological significance. It would be attractive to view the transporter as a collaborator of the Ca²⁺ pump, insuring the deposition of sufficient Ca²⁺ inside the vesicles to serve as a proper Ca2+ reservoir. Yet the affinity data reported here for Pi are difficult to reconcile with such a role. Although the estimates of intracellular P; vary considerably with different investigators, methods and tissues, the overal intramuscular P; concentration appears to be too low to support Ca²⁺ entry into sarcoplasmic reticulum. It is conceivable, however, that in the intact muscle there is a high local Pi concentration at the sarcoplasmic reticulum membrane generated by ATP hydrolysis during initial Ca²⁺ transport. On the other hand, the possibility should be considered that the affinity for P_i may be under the control of other factors, e.g., secondary messengers, and further explorations of these appear warranted.

Acknowledgements

These studies were supported by Grant CA-08964, awarded by the National Cancer Institute, DHEW.

References

- 1 Hasselbach, W. and Weber, H.H. (1974) in Membrane Proteins in Transport and Phosphorylation (Azzone, G.F., Klingenberg, M.E. and Quagliariello, E., eds.), pp. 103-111, North-Holland, Amsterdam
- 2 Knowles, A. and Racker, E. (1975) J. Biol. Chem. 250, 3538-3544
- 3 Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) J. Biol. Chem. 193, 265-275
- 4 MacLennan, D.H. (1970) J. Biol. Chem. 245, 4508-4518
- 5 Kasahara, M. and Hinkle, P.C. (1977) J. Biol. Chem. 252, 7384-7390
- 6 Zimniak, P. and Racker, E. (1978) J. Biol. Chem. 253, 4631-4637
- 7 Gasko, O.D., Knowles, A.F., Shertzer, H.G., Suolinna, E.M. and Racker, E. (1976) Anal. Biochem. 72, 57-65
- 8 Mermier, P. and Hasselbach, W. (1976) Eur. J. Biochem. 69,
- 9 Penefsky, H.S. (1977) J. Biol. Chem. 252, 2891-2899